IJESRT: 9(9), September, 2020 ISSN: 2277-9655

International Journal of 'ngineering Sciences & Research
Technology

(A Peer Reviewed Online Journal)
Impact Factor: 5.164

Chief Editor Executive Editor
Dr. J.B. Helonde Mr. Somil Mayur Shah

Website: Mail:




.:E THOMSOMN REUTERS

ISSN: 2277-9655

[Kulli, 9(9): September, 2020] Impact Factor: 5.164
IC™ Value: 3.00 CODEN: IJESS7

= JESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY
SOME BOUNDS ON SUM CONNECTIVITY AND PRODUCT CONNECTIVITY
ZAGREB-K-BANHATTI INDICES OF GRAPHS
V. R. Kulli
Department of Mathematics, Gulbarga University, Kalaburgi(Gulbarga) 585 106, India

DOI: https://doi.org/10.29121/ijesrt.v9.19.2020.15

ABSTRACT
The connectivity indices are applied to measure the chemical characteristics of compound in Chemical Graph
Theory. In this paper, we introduce the sum connectivity Zagreb-K-Banhatti index and product connectivity
Zagreb-K-Banhatti index of a graph. We provide lower and upper bounds for the sum connectivity Zagreb-K-
Banhatti index and product connectivity Zagreb-K-Banhatti index of a graph in terms of Zagreb and K-Banhatti
indices.

Keywords: Graph, sum connectivity Zagreb-K-Banhatti index, product connectivity Zagreb-K-Banhatti index.
Mathematics Subject Classification: 05C05, 05C12, 05C35.

1. INTRODUCTION
Let G be a simple, connected graph with n vertices and m edges with vertex set /(G) and edge set E(G). The
degree dg(u) of a vertex u is the number of vertices adjacent to u. If e=uv is an edge of G, then the vertex u and
edge e are incident as are v and e. The vertices and edges of a graph are called its elements. The degree of an edge
e=uv in G is defined by ds(e) = do(u) + do(v) — 2. For all further notation and terminology, we refer the reader to

[1].

A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bounds. Chemical
Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of the
Chemical Sciences. A topological index is a numeric quantity from the structure of a molecule. There are
numerous molecular descriptors, which are also referred to as topological indices, that have found some
applications in Theoretical Chemistry, especially in QSPR/QSAR study, see [2, 3, 4].

The first and second Zagreb indices take into account the contributions of pairs of adjacent vertices. These indices
were introduced by Gutman et al. in [5], defined as

M(G)= > d;w) = > [dgw)+dg()]

ueV(G) weE(G)
M,(G)= > dswdg ).
uveE(G)

These indices have been extensively studied in [6, 7, 8].
The modified second Zagreb index [9] is defined as

* 1
M, (G) = _

? uveE(G) dG (u)dG (V)
The sum connectivity index [10] of a graph G is defined as
S(G)=

web @)\ dg W) +dg (v)
The product connectivity index [11] of a graph G is defined as

[144]
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P(G)

uveE(G) dG (U)dG (V) .

The general product connectivity index [12] of a graph G is defined as

P(G)= > [dswd; (W]
uveE(G)
where o is a real number.

More details on these types of connectivity indices, we refer to [13, 14, 15].

In [16], Milicevi¢ et al. introduced the first and second reformulated Zagreb indices of a graph G in terms of edge
degrees instead of vertex degrees and defined as

EM,(G)= Y d,(e), EM,(G)=Yd,(e)d,(f):
ecE(G) e~f

where e ~ fmeans that the edges e and f'are adjacent.

We define the sum connectivity reformulated index of a graph G as

SEM (G
EMIG) = Zw/d (e)+d

We also define the product connectivity reformulated index of a graph G as

G
PEM (G) = Z '701 o

The reformulated Zagreb indices were studied, for example, in [17, 18, 19].

The first and second K-Banhatti indices take into account the contributions of pairs of incident elements. The first
and second K-Banhatti indices were introduced by Kulli in [20], defined as

B(G)=>[d;(w)+d; ()], B,(G)=Y d,(u)d, e),

where ue means that the vertex # and edge e are incident.
In [21], Kulli et al. introduced the sum connectivity Banhatti index of a graph G, which is defined as

SB(G) =Y

1
w \Jdg (W) +d; (e)

The produce connectivity Banhatti index was introduced by Kulli et al. in [22] and defined it as

PB(G)=)"

1
w d,(u)d, (e)

The K-Banhatti indices have been studied extensively. For their applications and mathematical properties, see [23,
24, 25, 26, 27].

Motivated by the work on the Zagreb and K-Banhatti indices, Kulli et al. introduced the Zagreb-K-Banhatti index
[28] of a graph G and defined it as

MBG)= Y [dg(a)+dy(5)]

a is either adjacent
or incident to b

where a and b are elements of G.

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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The second Zagreb-K-Banhatti index [29] of a graph G is defined as
MB,(G)= > dy(a)d;(b)

a is either adjacent
or incident to b

The first and second hyper Zagreb-K-Banhatti indices were introduced and studied by Kulli in [30].

Based on the successful consideration of Zagreb-K-Banhatti indices, we introduce the sum connectivity Zagreb-
K-Banhatti index and product connectivity Zagreb -K-Banhatti index of a graph G and they are defined as

SMB(G) =
alseltheradjacemﬂd (a)+d (b

or incident to b

a is either adjacem ﬂ d (a ) d (b

or incident to b

PMB(G) =

In this study, we obtain some lower and upper bounds for SMB(G) and PMB(G) in terms of some degree based
topological indices.

2. BOUNDS ON SUM CONNECTIVITY ZAGREB-K-BANHATTI, ZAGREB, K-
BANHATTI- TYPE INDICES

Theorem 1. Let G be a graph with n > 3 vertices and m edges. Then
SMB(G) = S(G)+SEM (G) + SB(G).
Proof: Let G be a graph with n > 3 vertices and m edges. Then

SMB(G) =
a is either adjacem ﬂ d (a) + d (b

or incident to b

1 1 1
- Z<> Jd, (@) +d, (b) " g,fe%,g~f./d6 (a)+d,(b) " a%;‘)«/dc (a)+d, (b)
=S(G)+SEM (G)+SB(G).

We use the following inequality to prove our next result.

Theorem 2 [23]. For any (n, m)-connected graph G with 8(G) > 2 and n > 3 vertices,
SB(G)<2S8(G).

Theorem 3. For any (n, m)-connected graph G with n > 3 vertices and 8(G) > 2,
SMB(G) <38(G)+SEM (G).

Proof: From Theorem 1, we have
SMB(G) =S(G)+SEM (G) + SB(G).
Using Theorem 2, we obtain

SMB(G) <3S(G)+SEM (G).
We use the following result to prove our next result.
Theorem 4 [31]. Let G be a graph with # vertices and m edges. Then

S(G)< mP(G)
< Sy

with equality if and only if G is regular.

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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Theorem 5. For any (n, m)-connected graph G with n <3 vertices,

SMB(G) S%x/mP(G) + SEM(G).

Proof: From Theorem 3, we have
SMB(G)<3S(G)+SEM (G).

Using Theorem 4, we obtain

SMB(G) S%x/mP(G) + SEM(G).

Theorem 6. For any (n, m) connected graph G with n < 3 vertices and m>1 edges,
3
SMB(G) < Exlmn +SEM (G).

mn

Proof: In [31], S(G) < with equality if and only if G is regular.

Using this inequality and Theorem 3, we get,
3
SMB(G) < 5\/ mn +SEM (G).

We use the following result to establish our next result.
Theorem 7 [10]. Let G be a graph with # vertices and maximum degree A(G). Then

nJA(G)

yND

with equality if and only if G is regular of degree A(G).

Theorem 8. Let G be a graph with n > 3 vertices, m edges and maximum degree A(G). Then

3nm
22

3n\/ﬂ
22

Proof: From Theorem 3, we have
SMB(G)<3S(G)+SEM (G).

Using Theorem 7, we obtain

3nm
NP

Since A(G)<n—1, we get

3n/n—1
02

We use the following result to prove our next results.

SMB(G) < +SEM (G).

Further, SMB(G) < +SEM(G).

SMB(G) < +SEM (G).

SMB(G) < +SEM (G).

[147]
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Theorem 9 [23]. For any (n, m)-connected graph G with 8(G)>2 and n>3 vertices,

(1) SB(G) <\/m(m+1) P(G).
) SB(G) </mM,(G).

3 SB(G)<ym(m+DM.(G).

Theorem 10. For any (n, m)-connected graph G with 6(G) > 2 and »n > 3 vertices,
1
SMB(G) <A/mP(G) (ﬁ ++/m +1j +SEM (G).

Proof: From Theorem 1, we have
SMB(G) =S(G)+SEM (G) + SB(G).
Using Theorem 4, we get

SMB(G) <, /%(G) +SEM (G)+ SB(G).

Using Theorem 9(1), we obtain

SMB(G) < mpz(G)+SEM(G)+\/m(m+1)P(G).

Thus SMB(G)sx/mP(G)[ x/—m+lJ+SEM(G).

1
—+
V2
Theorem 11. For any (n, m)-connected graph G with 5(G) > 2 and n > 3 vertices,

SMB(G) s”—“ﬁg;)+SEM(G)+JmM1 (G).

Proof: From Theorem 1, we have
SMB(G) = S(G)+SEM (G) + SB(G).

Using Theorem 7, we get

SMB(G)s”—“A(G)+SEM(G)+SB(G).

22

Using Theorem 9(2), we obtain

SMB(G) s”—“ﬁg;)+SEM(G)+JmM1 (G).

Theorem 12. For any (n, m)-connected graph with 8(G) > 2 and n > 3 vertices,

Nnm
2

SMB(G) <X 4 m(m +1) M;, (G) + SEM (G).

Proof: From Theorem 1, we have

SMB(G) =S(G)+SEM (G) + SB(G).
Since S(G) < \/;_m

Jnm

SMB(G) <~ +m(m +1)M; (G) + SEM (G).

, and Theorem 9(3), we obtain

[148]
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We use the following results to prove our next result.

Theorem 13 [10]. Let G be a graph with m > 1 edges. Then

mm
JM,(G)

with equality if and only if ds(u)+ dg(v) is constant for every edge uv of G.

S(G)<

Theorem 14 [23]. For any (n, m)-connected graph G with n > 3 vertices,
(Zm)

B (G)
with equality if and only if G is regular.

SB(G) < ——

Theorem 15. For any (n, m)-connected graph with G with n > 3 vertices,

1 22
SMB(G) >
( )>mm£\/M1(G)+\/BI(G)

Proof: From Theorem 1, we have
SMB(G) =S(G)+SEM (G) + SB(G).

From Theorems 13 and 14, we obtain

j+SEM(G).

\/7 (Zm)%
SMB(G) >N | SEM(G) +—222
JM,(G) JB(G)
22
Therefore SMB(G)>m\F[JM @ \/B( )]+SEM(G).

We use the following result to establish our next result.

Theorem 16 [10]. Let G be a graph with n > 5 vertices containing no isolated vertices. Then

s(g)x"=t

NS

with equality if and only if G is a star S,.

Theorem 17. For any (n, m)-connected graph with G with n > 5 vertices,

a1l (2m):

I BG

Proof: From Theorem 1, we have
SMB(G) =S(G)+SEM (G) + SB(G).

Using Theorems 14 and 16, we obtain
n— 1 (Zm)

Jn «/BG

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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We use the following result to obtain our next result.

Theorem 18 [23]. For any (n, m) connected graph G with 3(G) > 2 and n > 3 vertices,

nN?2
2 op6)<dm
(n-1)(n-2)
Further, equality holds in lower bound if and only if G = C3; and equality holds in upper bound if and only if G =

Cun=3.

Theorem 19. For any (n, m)-connected graph with G with 8(G) > 2 and n > 3 vertices,

%+S(G)+SEM(G)SSMB(G)£W+S(G)+SEM(G).
n-1(n-

Proof: From Theorem 1, we have
SMB(G) =S(G)+SEM (G) + SB(G).

Using Theorem 18, we obtain

2L (6)+ SEM(G) < SMB(G) <~ + S(G)+ SEM(G).

Jn=-1)(n-2)

3. BOUNDS ON PRODUCT CONNECTIVITY ZAGREB-K-BANHATTI, ZAGREB, K-
BANHATTI-TYPE INDICES

Theorem 20. Let G be a graph with n > 3 vertices and m edges. Then
PMB(G) = P(G)+ PEM (G) + PB(G).
Proof: Let G be a graph with n > 3 vertices and m edges. Then
1

P B Vi,
B I I I
= P(G)+ PEM (G) + PB(G).

We use the following result to prove our next result.

Theorem 21 [22]. For any connected graph G with n > 3 vertices,
PB(G)>P(G).

Theorem 22. For any (n, m)-connected graph G with n > 3 vertices,
PMB(G) >2P(G)+ PEM (G).
Proof: From Theorem 20, we have
PMB(G) = P(G)+ PEM (G) + PB(G).
Using Theorem 21, we obtain
PMB(G) >2P(G)+PEM (G).

We use the following result to establish our next result.

IJESRT is licensed under a Creative Commons Attribution 4.0 International License.
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Theorem 23[32]. Let G be a graph with n vertices and with minimum degree 8(G) and maximum degree A(G).
Then

5(G)A(G) )
5(G)+A(G)
Equality holds only when G is (8(G), A(G)) biregular.

P(G)>

Theorem 24. For any (n, m)-connected graph G with n > 3 vertices, minimum degree 8(G) and maximum degree

A(G),
218 (G)A(G)
5(G)+A(G)

Proof: From Theorem 22, we have

PMB(G)>2P(G)+PEM(G).

N 28 (G)A(G)

— 5(G)+AG)

PMB(G) > +PEM(G).

+PEM (G), by Theorem 23.

We use the following result to establish our next result.

Theorem 25 [22]. For any (n, m)-connected graph G with n > 3 vertices,

PB(G)> n5(G) .
J2A(3)(A(G) -1)

Equality holds if and only if G is regular.

Theorem 26. For any (n, m)-connected graph G with #n>3 vertices, minimum degree 5(G) and minimum degree

A(G),

J5(G)A(G) . 5(G)
5(G)+AG) A (6)(A(G)-1)
Proof: From Theorem 20, we have

PMB(G) = P(G)+ PEM (G) + PB(G).

Using Theorem 23, we obtain

m5(G)A(G)

5(G)+A(G)
Again by using Theorem 25, we get

S (G)A(G) né(G)

5@)+AG6) Ao ae)_1)

J5(G)A(G) 5(G)

5626 JaaG)(aG) 1)

PMB(G)>n + PEM (G).

PMB(G)> + PB(G) + PEM (G).

PMB(G)> + PEM (G).

Thus, PMB(G)>=n + PEM(G).

We use the following result to establish our next result.

[151]
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Theorem 27 [13]. Let G be a graph with n vertices and with minimum degree 8(G) and maximum degree A(G).
Then

l+a

P (G)> nA(G) 5(G)
o - 2 N

with equality if and only if G is regular.

Therefore P(G)=P , (G) >2 @ (1)
- 2\ a(6)

Theorem 28. For any (n, m)-connected graph with n > 3 vertices, and with minimum degree (G), maximum
degree A(G),

PMB(G)>n| & 5(G)+ 5(G) +PEM (G).

2VAG)  \2a(6)(a(G)-1)
Proof: From Theorem 20, we have

PMB(G)=P(G)+ PEM(G)+ PB(G)

Using inequality (1), we get

PMB(G)ZE,/@+PEM(G)+PB(G).

2V A(G)

Using Theorem 25, we obtain

PMB(G)>n| & 5(G)+ 5(G) +PEM (G).
2VAG)  \2a(6)(a(G)-1)

Theorem 29. For any (n, m)-connected graph G with n>3 vertices and with minimum degree 6(G), maximum
degree A(G),

5(G)
A(G)
Proof: From Theorem 22, we have

PMB(G)>2P(G)+PEM(G)
Using inequality (1), we obtain

5(G)
A(G)

PMB(G)>n[ Jz +PEM(G).

PMB(G)>n[ Jz +PEM(G).

We use the following result to establish our next result.

Theorem 30 [22]. For any (n, m)-connected graph G with 3(G) > 2 and n > 3 vertices,
PB(G) <SB(G).
Further equality is attained if and only if G = C,.

Theorem 31. For any (n, m)-connected graph G with 6(G) > 2 and n > 3 vertices,

[152]
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PMB(G) < P(G) +m(m+1) P(G) + PEM (G).

Proof: From Theorem 20, we have
PMB(G) = P(G)+ PEM (G) + PB(G).
Using Theorem 30, we get

PMB(G) < P(G)+ SB(G) + PEM (G).
Using Theorem 9(1), we obtain

PMB(G) < P(G) +m(m+1) P(G) + PEM (G).

We use the following result to prove our next result.

1
Theorem 32 [13]. Let G be a graph with n vertices and minimum degree 5(G). Let « e(—oo,—a:|. Then

P (G)< n5(G)l+2zz
“ B 2

Therefore P(G)=P, (G) Sg )
2
Theorem 33. For any (n, m)-connected graph G with n>3 vertices and 6(G) > 2,

PMB(G) S§+./mM1 (G) + PEM (G).

Proof: From Theorem 20, we have
PMB(G) = P(G)+ PB(G) + PEM (G).
Using inequality (2) and Theorem 30, we get

PMB(G)£§+SB(G)+PEM(G). 3)
Using Theorem 9(2), we obtain

PMB(G) S§+./mM1 (G) + PEM (G).

Theorem 34. For any (n, m)-connected graph G with 6(G) > 2 and n > 3 vertices,

PMB(G)£§+\/m(m +1)M; (G) + PEM (G).

Proof: From inequality (3), we have
PMB(G) sg +SB(G) + SEM (G).
Using Theorem 9(3), we obtain
PMB(G) sg +m(m+1)M; (G) + PEM (G).

We use the following result to establish our next result.

Theorem 35 [22]. For any connected graph G with 8(G) > 2 and n > 3 vertices,

26(G) 2A(G)

Theorem 36. For any connected graph G with 6(G) =2 and n > 3 vertices,

[153]
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25(G) 2A(G)

Proof: From Theorem 20, we have
PMB(G)=P(G)+PB(G)+PEM(G).
Using Theorem 35, we obtain

JP(G)+ PEM(G)SPMB(G)S(I +

2A(G)

(1+ 25(G)
5(G)-1

JP(G)+PEM(G).
AG) -1

JP(G)+ PEM(G)SPMB(G)S(I +

Theorem 37. Let G be graph with n vertices and minimum degree 8(G) and maximum degree A(G). Then

n |6(G) n
3 /@sP(G)sE (4)

Proof: (4) follows from inequality (1) and inequality (2).
We use the following result to obtain our next result.

Theorem 38 [22]. For any (n, m)-connected graph G with 5(G) > 2 and n > 3 vertices,
2
(n-1(n-2)
Further equality holds in lower bound if and only if G = C; and equality holds in upper bound if and only if G =
Ci,n=3.

<PB(G)<n.

Theorem 39. For any (n, m)-connected graph G with 6(G) > 2 and n > 3 vertices,
n 5(G) N n2
A(G) Nn=1D(n-2)

Proof: From Theorem 20, we have
PMB(G) = P(G) + PB(G) + PEM (G).
Using inequality (4), we obtain

n ’é‘ig; PB(G)+ PEM (G)< PMB(G) <2 5 + PB(G) + PEM (G).

+PEM(G)SPMB(G)S%n + PEM (G).

Usmg Theorem 38, we obtain
n 5(G) N n2
AG)  Jn-D(n-2)

Theorem 40 [22. For any (n, m)-connected with 8(G) > 2 and n > 3 vertices,

26(G) . 2A(G)
m&(G)MZ (G)<PB(G)< 51

+PEM(G)SPMB(G)S%n + PEM (G).

AG)M; (G).

Theorem 41. For any (n, m)-connected with 8(G) > 2 and n > 3 vertices,

AG) M, (G) + PEM (G).

n |6(G) 26(G) . n | 2A(G)
\/A(G) +\/A(G)_15(G)M2 + PEM (G) < PMB(G) < > 3G
Proof: From Theorem 20, we have
PMB(G) = P(G) + PB(G) + PEM (G).
Using inequality (4), we obtain

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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Usmg Theorem 40, we get

n /5(6) 2A(G) .
AC) +5(G)M, (G)+PEM(G)<PMB(G)_2 mA(G)MZ (G)+ PEM (G).

Theorem 42[22]. For any (n, m)-connected graph G with 3(G) > 2 and n > 3 vertices,
2 2A
m 5(G) < PB(G) <" (G)

AG)VA(G) -1 s(G\Ns(G)-1
Equality in both lower and upper bounds will hold if and only if G is regular.

Theorem 43. For any (n, m)-connected with 8(G) > 2 and n > 3 vertices,

n /5(G) m | 26(G) m | 2A(G)
2VaG) A\ AG)-1 PEM(G)<PMB(G)_2 3G §(G)_1+PEM(G).

Proof: From Theorem 20, we have
PMB(G) = P(G) + PB(G) + PEM (G).
Using inequality (4), we get

n [6(G) +PB(G)+PEM(G)<PMB(G)< + PB(G)+ PEM (G).
2VA(G) 2

Using Theorem 42, we obtain

n[6G) , m [2656) oo pum(ye s [ 286 o)
2V A(G)

AG)VAG) -1 2 6(G) 0(G)-1

We use the following results to establish our next result.

Theorem 44 [33]. Let G be a simple connected graph with n vertices and m edges. Let p, A(G), 31(G) denote the
number of pendant vertices, maximum vertex degree and minimum nonpendant vertex degree of G respectively.

Then
p 2J5(OAG) (m-p) J—‘
a6 66)+A0) MG -5 < PlO)<

\/%K/( )[M (G)—mJ

Theorem 45 [22]. For any (n, m)-connected graph G with p pendant vertices and minimum nonpendant vertex
degree 0:(G),

p(1+4A(G)) +(m - p)\2 < pa() < PUF(G) + (m—p)V2
Ja@a@ -1 s+ @-1)

Theorem46. For any (n, m)-connected graph G with p pendant vertices, maximum vertex degree A(G), minimum
nonpendant vertex degree 6:1(G),

htytp: // www.ijesrt.com© International Journal of Engineering Sciences & Research T echnology
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p

+ PEM (G)

JA(G) "

< PMB(G) <—2 +\/(m—p)[M;(G)— P j+

2\/51(G)A(G)(m—p)\/M*(G)_ p_, p(1+yAG)+(m-p)V2
5 (G)+A(G) : A(G) AG)A(G) -1

p(1+6,(G))+(m- p)N2

+PEM (G)
J6.(G)+(5,(G)-1)

A(G)

JA(G)

Proof: From Theorem 20, we have

4.

PMB(G) = P(G) + PB(G) + PEM (G).
Then from Theorems 44 and 45, we get the desired result.

CONCLUSION

In this study, we have introduced the sum connectivity Zagreb-K-Banhatti index and product Zagreb-K-Banhatti

index of
indices o

a graph. We have established lower and upper bounds for these two connectivity Zagreb-K-Banhatti
fa connected graph in terms of Zagreb indices.
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